Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere ∗

نویسندگان

  • M. Calixto
  • J. Guerrero
  • J. C. Sánchez - Monreal
چکیده

Using coherent-state techniques, we prove a sampling theorem for Majorana's (holomor-phic) functions on the Riemann sphere and we provide an exact reconstruction formula as a convolution product of N samples and a given reconstruction kernel (a sinc-type function). We also discuss the effect of over-and under-sampling. Sample points are roots of unity, a fact which allows explicit inversion formulas for resolution and overlapping kernel operators through the theory of Circulant Matrices and Rectangular Fourier Matrices. The case of band-limited functions on the Riemann sphere, with spins up to J, is also considered. The connection with the standard Euler angle picture, in terms of spherical harmonics, is established through a discrete Bargmann transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier–laplace Transform of Irreducible Regular Differential Systems on the Riemann Sphere, Ii

This article is devoted to the complete proof of the main theorem in the author’s paper of 2004 showing that the Fourier–Laplace transform of an irreducible regular differential system on the Riemann sphere underlies, at finite distance, a polarizable regular twistor Dmodule. 2000 Math. Subj. Class. Primary: 32S40; Secondary: 14C30, 34Mxx.

متن کامل

Fast, exact (but unstable) spin spherical harmonic transforms

We derive algorithms to perform a spin spherical harmonic transform and inverse for functions of arbitrary spin number. These algorithms involve recasting the spin transform on the two-sphere S as a Fourier transform on the two-torus T. Fast Fourier transforms are then used to compute Fourier coefficients, which are related to spherical harmonic coefficients through a linear transform. By recas...

متن کامل

Dft : Discrete Fourier Transform

A. Table of contents by sections: 1. Abstract (you’re reading this now) 2. Summary of the DFT (How do I do the homework?) 3. Review of continuous-time Fourier series 4. Bandlimited signals and finite Fourier series 5. Sampling theorem for periodic signals 6. Review of quirks of discrete-time frequency 7. Orthogonality and its significance 8. Discrete Fourier Transform (DFT) 9. Use of DFT to com...

متن کامل

Sampling Theorem and Discrete Fourier Transform on the Hyperboloid

Using Coherent-State (CS) techniques, we prove a sampling theorem for holomorphic functions on the hyperboloid (or its stereographic projection onto the open unit disk D1), seen as a homogeneous space of the pseudo-unitary group SU(1, 1). We provide a reconstruction formula for bandlimited functions, through a sinc-type kernel, and a discrete Fourier transform from N samples properly chosen. We...

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006